Some Lower Bounds for the Perron Root of a Nonnegative Matrix
نویسندگان
چکیده
In this paper, we present some lower bounds for the Perron root of a symmetric nonnegative matrix, which are then applied to give the lower bounds of the Perron root of a general nonnegative matrix. These bounds improve the corresponding ones in [3] and [5]. Numerical examples are supplemented to illustrate the effectiveness of the presented bounds. Mathematics subject classification (2010): 15A18, 15A57, 65F15.
منابع مشابه
The Sign-Real Spectral Radius for Real Tensors
In this paper a new quantity for real tensors, the sign-real spectral radius, is defined and investigated. Various characterizations, bounds and some properties are derived. In certain aspects our quantity shows similar behavior to the spectral radius of a nonnegative tensor. In fact, we generalize the Perron Frobenius theorem for nonnegative tensors to the class of real tensors.
متن کاملSome results on the block numerical range
The main results of this paper are generalizations of classical results from the numerical range to the block numerical range. A different and simpler proof for the Perron-Frobenius theory on the block numerical range of an irreducible nonnegative matrix is given. In addition, the Wielandt's lemma and the Ky Fan's theorem on the block numerical range are extended.
متن کاملBounds for Levinger’s function of nonnegative almost skew-symmetric matrices
The analysis of the Perron eigenspace of a nonnegative matrix A whose symmetric part has rank one is continued. Improved bounds for the Perron root of Levinger’s transformation (1 − α)A+ αAt (α ∈ [0, 1]) and its derivative are obtained. The relative geometry of the corresponding left and right Perron vectors is examined. The results are applied to tournament matrices to obtain a comparison resu...
متن کاملTwo inequalities for the Hadamard product of matrices
Correspondence: [email protected] Department of Mathematics, Dezhou University, Dezhou, 253023 Shandong, China Abstract Using a estimate on the Perron root of the nonnegative matrix in terms of paths in the associated directed graph, two new upper bounds for the Hadamard product of matrices are proposed. These bounds improve some existing results and this is shown by numerical examples. MS...
متن کاملAN ALGORITHM FOR COMPUTING THE PERRON ROOT OF A NONNEGATIVE IRREDUCIBLE MATRIX by PRAKASH CHANCHANA
CHANCHAN, PRAKASH. An Algorithm for Computing the Perron Root of a Nonnegative Irreducible Matrix. (Under the direction of Carl D. Meyer.) We present a new algorithm for computing the Perron root of a nonnegative irreducible matrix. The algorithm is formulated by combining a reciprocal of the well known Collatz’s formula with a special inverse iteration algorithm discussed in [10, Linear Algebr...
متن کامل